SMARANDACHE – BOOLEAN – NEAR – RINGS AND ALGORITHMS WITH EXAMPLES

Dr. N. KANNAPPA¹, Mrs. P. TAMILVANI²

¹HOD & Reader in Mathematics, T.B.M.L. College, Porayar-609307, Bharathidasan University. ²Guest Lecturer in Mathematics, D.G.G.A. College(W), Mayiladuthurai-609001, Bharathidasan University

ABSTRACT

In this paper we introduced Smarandache-2-algebraic structure of Boolean-near-ring namely Smarandache-Boolean-near-ring. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exists a proper subset M of N, which is embedded with a stronger algebraic structure A_1 , stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, form the unit element if any, from the whole set. We define Smarandache-Boolean-near-ring and obtain some of its algorithms through Boolean-ring with left-ideals, direct summand, Boolean-*l*-algebra, Brouwerian algebra and Compatibility. We refer to G. Pilz.

The study of Boolean-near-ring is one of the generalized structure of rings. The study and research on near-rings is very systematic and continuous. Near-rings newsletters containing complete and updated bibliography on the subject of near-rings are published periodically by a team of editors. Then motivated by several researchers we wish to study and analyse the substructure in Smarandache-near-rings. The substructure in near-rings play vital role in the study of near-rings. Unlike other algebraic structure we see in case of near-rings we have the substructure playing vital role in the study and analyse of near-rings. Apart from the sub near-rings and ideals of near-rings we have special substructure like N-groups, filter and modularity in near-rings. It is these study in the context of Smarandache-Boolean-near-rings will yield several interesting results. Also the Smarandache substructure in Boolean-near-rings will also yield very many results in the direction.

For the study we would be using the book of Pilz Gunter, Near-rings (1997) published by North Holland Press. by Amesterdam[10], Special Algebraic Structure FlorentinSmarandache, University of New Mexico, USA (1991) [18], Smarandache Algebraic Structure by Raul Padilla, Universidade do Minho, Portugal (1999) [13], Blackett [3] discusses the near-ring of affine transformations on a vector space where the near-ring has a unique maximal ideal. Gonshor [8] defines abstract of affine nearrings and completely determines the lattice of ideals for these nearrings. The near-rings of differential transformations is seen in [4]. For near-rings with geometric interpretation [10] or [18] and several research papers on Boolean-near-rings. We would first study and characterize the ideals and sub Boolean-near-rings in Smarandache-Boolean-near-rings. Also to study and analyse those Boolean-nearrings, which are Smarandache-Boolean-near-ring and find the conditions for Smarandache-Boolean-near-rings. Yet another major substructure in Boolean-near-rings is the notion of filters. We would extend and study the notion of Smarandache filters given in Smarandache-Boolean-near-rings.

Further the notion of Smarandache ideals in near-ring would be studied, characterized and analysed for Smarandache-Boolean-near-rings. Both the notions viz. N-groups and ideals in near-ring and Smarandache-boolean-near-rings would be compared and contrasted. Also the nice notion of modularity in near-rings, which are basically built using concepts of idempotents, will be studied and analysed in Smarandache modularity in Boolean-nearring. Finally, Smarandache-Boolean-near-rings has constructed from Boolean-ring by an algorithmic approach through its substructures and Smarandache-Boolean-near-ring has introduced some application.

Keywords: Boolean-ring, Boolean-near-ring, S-Boolean-near-ring, Boolean-l-algebra, Brouwerian algebra and Compatibility.

1. INTRODUCTION

In order that New notions are introduced in algebra to better study the congruence in number theory by FlorentinSmarandache [4]. By <proper subset> of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A – if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_1 \ll S_2$ if: both are defined on the same set; all S_1 laws are also S_2 laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S_1 laws, or S_2 has more laws than S_1 .

For example: Semi group <<Monoid<< group << ring<< field, or Semi group<< commutative semi group, ring<< unitary, ring etc. They define a General special structure to be a structure SM on a set A, different form a structure SN, such that a proper subset of A is a structure, where SM<< SN <<.

2. PRELIMINARIES

DEFINITION: 2.1

A left near-ring A is a system with two binary operations, addition and multiplication, such that

- (i) the elements of A form a group (A,+) under addition,
- (ii) the elements of A form a multiplicative semi-group,

(iii) x(y+z) = xy + xz, for all $x, y, z \in A$

In particular, if A contains a multiplicative semi-group S whose elements generate (A,+) and satisfy

(iV) (x + y) = xs + ys, for all x, $y \in A$ and $s \in S$, then we say that A is a distributively generated near-ring.

DEFINITION: 2.2

A near-ring $(\mathbf{B}, +, \bullet)$ is Boolean-Near-Ring if there exists a Boolean-ring $(A, +, \land, 1)$ with identity such that \bullet is defined in terms of +, \land and 1, and for any $b \in B$, $b \bullet b = b$

DEFINITION: 2.3

A near-ring (B, +, \bullet) is said to be idempotent if $x^2 = x$, for all $x \in B$. If (B,+, \bullet) is an idempotent ring, then for all a, $b \in B$, a + a = 0 and a $\bullet b = b \bullet a$

DEFINITION: 2.4

A Boolean-near-ring $(B, +, \bullet)$ is said to be Smarandache-Boolean-near-ring whose proper subset A is a Boolean-ring with respect to same induced operation of B.

DEFINITION: 2.5 (Alternative definition for S-Boolean-near-ring)

If there exists a non-empty set A which is a Boolean-ring such that it superset B of A is a Boolean-near-ring with respect to the same induced operation, then B is called Smarandache-Boolean-nearring.

It can also written as S-Boolean-near-ring.

EXAMPLE FOR SMARANDACHE-BOOLEAN-NEAR-RING: 2.6

Boolean-ring:

A Boolean-ring is an algebraic structure $(A, +, \bullet)$ together with two binary operations addition and multiplication defined as follows

(A, +) is a group,

For,(i)Closure under addition :

For all
$$a, b \in A$$
, then $a + b \in A$

(ii)Associativity under addition :

For all a, b,
$$c \in A$$
, then $(a + b) + c = a + (b + c) \in A$

(iii)Commutativity of addition :

For all $a, b \in A$, then $a + b = b + a \in A$

(iv)Identity element for addition :

For all $a \in A$, then there exists 0 in A such that $0 + a = a + 0 = a \in A$

(v)Characteristic 2 for addition :

For all $a \in A$, then $a + a = 0 \in A$

- (A, \bullet) is a semigroup :
- (vi)Closure under product :

For all $a, b \in A$, then $a \bullet b \in A$

(vii)Associativity of product :

For all a, b, c \in A, then(a \bullet b) \bullet c = = a \bullet (b \bullet c) \in A

(viii)Identity element for product :

For all a in R then there exists 1 in R such that $1 \bullet a = a \bullet 1 = a \in A$

(ix)Idempotent of product : For all $a \in A$, then $a \bullet a = a \in A$

Product is distributive over addition :

(x) Left-distributive law holds: For all a, b, $c \in A$, then $a \bullet (b + c) = (a \bullet b) + (a \bullet c) \in A$

Example for Boolean-ring :

Let $A = \{0, a\} \subset B$, be a finite-Boolean-ring. Defined by

+	0	а
0	0	а
a	а	0

•	0	a
0	0	0
a	0	a

Boolean-near-ring :

A near-ring $(B, +, \bullet)$ is said to be Boolean-near-ring if there exists a Boolean-ring $(A, +, \land, 1)$ with that that \bullet interms +, \land and 1, and for any $b \in B$,

b•	b=b
----	-----

+	0	a	b	с
0	0	a	b	с
a	а	0	с	b
b	b	с	0	a
c	c	b	a	0

•	0	a	b	c
0	0	a	b	с
а	a	а	а	a
b	b	b	b	b
с	с	с	с	с

Therefore, the above conditions are satisfied, then we write B is a Boolean-near-ring.

Smarandache-Boolean-near-ring :

A Boolean-near-ring (B, +, \bullet) is said to be Smarandache-Boolean-near-ring whose proper subset A is a Boolean-ring with respect to the same induced operation of B.

Verify that, B is a Smarandache-Boolean-near-ring under '+' and ' \bullet ',

For check the following conditions,

(B, +) is a group,

For, (i) Closure under addition :

For all $a, b \in B$, then $a + b \in B$

(ii)Associativity under addition :

For all a, b, $c \in B$, then (a + b)+c=

 $a + (b + c) \in B$

(iii)Commutativity of addition :

For all $a, b \in B$, then $a + b = b + a \in B$

(iv)Identity element for addition :

For all $a \in B$, then there exists 0 in B such that $0 + a = a + 0 = a \in B$

(v)Characteristic 2 for addition :

For all $a \in B$, then $a + a = 0 \in B$

 (B, \bullet) is a semigroup :

(vi)Closure under product :

For all $a, b \in B$, then $a \bullet b \in B$

(vii)Associativity of product :

For all a, b, c \in B, then $(a \bullet b) \bullet c = a \bullet (b \bullet c) \in B$

(viii) Identity element for product :

For all a in R then there exists 1 in R such that $1 \bullet a = a \bullet 1 = a \in B$

(ix) Idempotent of product :

For all $a \in A$, then $a \bullet a = a \in B$

Product is distributive over addition :

(x) Left-distributive law holds, for all a, b, $c \in B$, then $a \bullet (b + c) = (a \bullet b) + (a \bullet c) \in B$

Here A is satisfied idempotent condition of B, then we write A is a Boolean-ring, for a in A then a \bullet a = a $\in A$

Hence, the proper subset of Boolean-near-ring is a Boolean-ring and therefore, B is a Smarandache-Boolean-near-ring.

3. ALGORITHMICSTRUCTUREOF SMARNADACHE-BOOLEAN-NEAR-RING:

In this section, Algorithms to construct the S-Boolean-nearrings from its characterization are obtained.

THEOREM: 3.1

If a non-empty set B contains a unique minimal Boolean-*l*-algebra contained in all other non-zero Boolean-*l*-algebras. Then B is a Smarandache-Boolean-near-ring.

proof : Consider a Boolean-ring $I_0 \neq \{0\}$, since a Boolean-ring itself is a Boolean-*l*-algebra. Then I_0 is a Boolean-*l*-algebra. Let B be nonempty set in which A is a proper subset. Now to find subsets of B which contains I_0 such that they are Boolean-*l*-algebras with respect to the same induced operations of A.In Gunter Pilz [] in section 1.60. The Theorem by Gratzer and Fain is given by the following conditions for a Boolean-near-ring $B \neq \{0\}$ are equivalent

1. $\cap I \neq \{0\}, \{0\} \neq I \subseteq N$

2. B contains a unique minimal Boolean-*l*-algebra, contained in all other non-zero Boolean-*l*-algebras.

Hence, consider the non-empty set B is a Boolean-nearring. Now by Theorem [1], B is a Smarandache-Boolean-near-ring.

By similar argument by the Theorem[1], We have the following results

THEOREM : 3.2

If a non-empty set B contains a unique minimal Browverian algebra contained in all other non-zero Browverian algebras. Then B is a Smarandache-Boolean-near-ring.

Since in a Boolean-ring, Browverian algebras are Booleanl-algebras. Hence by Theorem [4] gives

THEOREM : 3.3

If a non-empty set B contains a unique minimal compatibility contained in all other non-zero compatibilities. Then B is a Smarandache-Boolean-near-ring. Also by theorem [1], we have the following results

ALGORITHM : 3.1.1

BOOLEAN-*l*-ALGEBRA

Step 1: Consider a Boolean-ring A

Step 2: Verify that A is a Boolean-ring with respect to same induced operations

For, Check the following conditions,

'+' is defined as follows,

- 1. For all $n_1, n_2 \in A$, then $n_1 + n_2 \in A$
- 2. For all $n_1, n_2, n_3 \in A$, then $n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$
- 3. For all $n \in A$, there exist $e \in A \implies n + e = e$ + n = n
- 4. For all $n \in A$, there exist $n' \in A \implies n+n'$ = n'+n=e

Let $A^* = A / \{0\}$

- 5. For all $n_1 \in A^* \Longrightarrow n_1 \bullet n_1 = n_1 \in A^*$,
- 6. For all n_1 , n_2 , $n_3 \in A^*$, then $n_1 \bullet (n_2 \bullet n_3) = (n_1 \bullet n_2) \bullet n_3$

7. For all
$$n \in A^*$$
, there exist $e \in A \implies n \bullet e' =$

 $e' \bullet n = n$

8.For all $n \in A^*$, there exist $n' \in A \implies n \bullet n' = n' \bullet n$ = e'

n₁,

- 9. For all $n \in A^*$, then $n \bullet n = n$
- 10. For all $n, m \in A^*$, then $n \bullet m = m \bullet n$
- 11. For all $n_1, n_2, n_3 \in A^*$, then $n_1 + (n_2 \bullet n_3) = (n_1 + n_2) \bullet (n_1 + n_3)$
- 12. For all $n_1 \in A \implies n_1 + n_1 = 0$

The above conditions are satisfied, then we write $(B, +, \bullet)$ is a Boolean-ring.

Step 3 : Let I_i , i = 0,1,2,3 be supersets of $I_{0.}$

Step 4: Let $B = \bigcup I_i$

Step5 : Choose the sets I_j from I_i 's subject to for all i_{j_a} ,

$$i_{j_2} \in I_j$$
 such that $i_{j_1} \leq i_{j_2}$ implies $i_{j_1} \cap (i_{j_2} - i_{j_1}) = 0$

Step 6 : Verify that $\bigcap I_i = I_0 \neq \{0\}$

Step 7: If step (6) is true, then we write B is a Smarandache-Boolean-near-ring.

EXAMPLE :BOOLEAN-*l*-ALGEBRA 3.1.2

Step 1 : Consider a non-empty set $A = \{0, n_1\}$

Step 2:Verify that $A = \{0, n_1\}$ is a Boolean-ring with respect to same induced operations

For, Check the following conditions, '+' is defined as follows, 0+0=0, $0+n_1=n_1$, $n_1+0=n_1$, $n_{1+}n_1=0$ Closure law : For all 0, $n_1 \in A$, (i) $0+0=0 \in A$, $0+n_1=n_1 \in A$, $n_1 + 0 = n_1 \in A$, $n_1 + n_1 = 0 \in A$ (ii)Associative law :For all 0, $n_1 \in A$, $0+(0+0) = (0+0) + 0/n_1 + (0+0) = (n_1+0) + 0$ $= 0+0 / n_1+0$ 0 + 0 $= n_1 + 0$ $= 0/n_1 = n_1$ 0 $0 + (0+n_1) = (0+0) + n_1/n_1 + (0+n_1) = (n_1+0) + n_1$ $0+n_1$ $= 0 + n_1 / n_1 + n_1 = n_1 + n_1$ $= n_1/0 = 0$ n_1 $0 + (n_1 + 0) = (0 + n_1) + 0 / n_1 + (n_1 + 0) = (n_1 + n_1) + 0$ $0+n_1=n_1+$ $/ n_1 + n_1 = 0 + 0$ $n_1 = n_1 = 0$ = 0 $0+(n_1+n_1) = (0+n_1)+n_1/n_1+(n_1+n_1) = (n_1+n_1)+n_1$ $0 + 0 = n_1 + n_1 / n_1 + 0$ $= 0 + n_1$ = 0 0 / n₁ $= n_1$

(iii) '0' is the additive identity element : For all 0, $n_1 \in A$ $0+n_1=n_1+0=n_1$ $/n_1+0=0+n_1=n_1$

(iv) The inverses of 0, n_1 are respectively 0, n_1 in A under addition. (v)Commutative law : For all 0, $n_1 \in A$

0 + 0 = 0 + 0	/	0+n	$_{1} = n_{1} + 0$
0 = 0	/	n_1	$= n_1$
.0.0.	,		
$n_1 + 0 = 0 + n_1$	/	n_1+r	$n_1 = n_1 + n_1$
$n_1 = n_1$	/	0	= 0
a the commutation	vity optiof	iad unda	r addition

Therefore, the commutativity satisfied under addition.

(vi)Characterstic 2 for addition is defined as, For all 0, $n_1 \in A$, 0 + 0 = 0 / $n_1 + n_1 = 0$ Now ' \bigcirc ' is defined as follows :

If $\mathbf{n}_i \leq \mathbf{n}_j$ then $\mathbf{n}_i \cap \mathbf{n}_j = \mathbf{n}_i$ and $\mathbf{n}_i \cap \mathbf{n}_i = \mathbf{n}_i$, $0 \cap 0 = 0$, $0 \cap \mathbf{n}_1 = 0$, $\mathbf{n}_1 \cap 0 = 0$,

 $n_1 \cap n_1 =$

(vii)Closure law : For all 0, $n_1 \in A$,

 $0 \cap 0 = 0, \qquad n_1 \cap n_1 = n_1,$

(viii)Associative law : For all 0, $n_1 \in A$, $0 \cap (0 \cap 0) = (0 \cap 0) \cap 0/$ $0 \cap 0 = 0 \cap 0$ 0 = 0 $n_1 \cap (n_1 \cap n_1) = (n_1 \cap n_1) \cap n_1$ $n_1 \cap n_1 = n_1 \cap n_1$

 $n_1 = n_1$ Similar way, we proceeds another associate laws.

(ix)Commutative law: For all 0, $n_1 \in A$, $0 \cap 0 = 0 \cap 0 / n_1 \cap n_1 = n_1 \cap n_1 / 0 \cap n_1 = n_1 \cap 0$, $0 = 0 / n_1 = n_1 / 0 = 0$ $n_1 \cap 0 = 0 \cap n_1 = 0 = 0$

- (x)Idempotent law : For all 0, $n_1 \in A$ $0 \cap 0 = 0$ and $n_1 \cap n_1 = n_1$
- (xi) $0 \cap (0 \cup 0) = (0 \cap 0) \cup (0 \cap 0)$ Similar way, the right distributive law holds Therefore, (A,+, \cap) is a Boolean-ring.
- Step 3: Let $A = A_0 = I_0$ Let $I_0 = A = \{0, n_1\}$
- Step 5: Let $B = \bigcup_{i=0}^{n} I_i$
- **Step 6 :** Choose set I_j's from I_i's subject to $n_i \le n_j$, implies $n_i \cap (n_j n_i) = 0$, for all $n_i, n_j \in I_j$
- Step 7: $(B,+,-, \cap)$ is defined as follows: + and \cap is defined as follows, '+' is defined by $0+0 = 0, 0+n_1 = n_1, 0+n_2 = n_2, 0+n_3 = n_3,$ $n_1+0 = n_1, n_1+n_1 = 0, n_1+n_2 = n_3, n_1+n_3 = n_2,$ $n_2+0 = n_2, n_2+n_1 = n_3, n_2+n_2 = 0, n_2+n_3 = n_1,$ $n_3+0 = n_3, n_3+n_1 = n_2, n_3+n_2 = n_1, n_3+n_3 = 0.$

' \bigcirc ' is defined by, $n_i {\leq} n_j$ implies $n_i {\bigcirc} n_j {=} n_i$ and $n_i {\bigcirc} n_i = n_i$

 $\begin{array}{c} 0 \frown 0 = 0, \, 0 \frown n_1 = 0, \, 0 \frown n_2 = 0, \, 0 \frown n_3 = 0, \\ n_1 \frown 0 = 0, \, n_1 \frown n_1 = n_1, \, n_1 \frown n_2 = n_1, \, n_1 \frown n_3 = n_1, \\ n_2 \frown 0 = 0, \, n_2 \frown n_1 = n_2, \, n_2 \frown n_2 = n_2, \, n_2 \frown n_3 = n_2, \\ n_3 \frown 0 = 0, \, n_3 \frown n_1 = n_3, \, n_3 \frown n_2 = n_3, \, n_3 \frown n_3 = n_3, \end{array}$

a-b is defined by $a-b = a+(a \cap b)$ For all $0 \in B$, $n_1 \in I_0$ then $0 \cap (n_1 - 0) = 0 \cap (n_1 + n_1 \cap 0) /$ $= 0 \cap (n_1 + 0)$ $= 0 \cap n_1$ $= 0 \in I_0$ For all $n_1 \in B$, $0 \in I_0$ then $n_1 \cap (0 - n_1) = n_1 \cap (0 + 0 \cap n_1)$ $= n_1 \cap (0 + 0) = n_1 \cap 0$ $= 0 \in I_0$ For all $n_2, 0 \in B$, then, $n_2 \cap (0 - n_2) = n_2 \cap (0 + 0 \cap n_2)$ $= n_2 \cap (0 + 0)$ $= n_2 \cap 0$ $= 0 \in I_0$ For all $n_3 \in B$, $0 \in I_0$ then, $n_3 \cap (0 - n_3) = n_3 \cap (0 + 0 \cap n_3) = n_3 \cap (0 + 0)$ $= n_3 \cap 0$ $= 0 \in I_0$ For all $n_2 \in B$, $n_1 \in I_0$ then, $n_2 \cap (n_1 - n_2) = n_2 \cap (n_1 + n_1 \cap n_2) = n_2 \cap (n_1 + n_1)$ $= n_2 \cap 0$ $= 0 \in I_0$ For all $n_3 \in B$, $n_1 \in I_0$ then, $n_3 \cap (n_1 - n_3) = n_3 \cap (n_1 + n_1 \cap n_3)$ $= n_3 \cap (n_1 + n_1) = n_3 \cap 0$ $= 0 \in I_0$ For all $n_1 \in B$, $n_1 \in I_0$ then / $n_1 \cap (n_1 - n_1) = n_1 \cap (n_1 + n_1 \cap n_1)$ $= n_1 \cap (n_1 + n_1)$ $= n_1 \cap 0 = 0 \in I_0$ For all $0 \in B$, $0 \in I_0$ then, $0 \cap (0 - 0) = 0 \cap (0 + 0 \cap 0)$ $= 0 \cap (0 + 0) = 0 \cap 0$ $= 0 \in I_0$ Hence, I₀ satisfies all the requirements. Therefore, we choose I_0 as I_{j} . Hence for $I_1 = \{0, n_1, n_2\}$ and $B = \{0, n_1, n_2, n_3\}$ $n_i \cap (n_i - n_i) = n_i \cap (n_i + n_i \cap n_i) = 0$, for all $n_i, n_i \in B$, and $0 \in I_1$. Therefore, I_1 also choose as I_i . Similarly, for $I_2 = \{0, n_1, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$ $n_i \cap (n_i - n_i) = n_i \cap (n_i + n_i \cap n_i) = 0$, for all $n_i, n_i \in B$, and $0 \in I_2$. Therefore, I₂ also choose asI_i. Similarly, for $I_3 = \{0, n_2, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$ $n_i \cap (n_i - n_i) = n_i \cap (n_i + n_i \cap n_i) = 0$, for all $n_i, n_i \in B$, and $0 \in I_3$. Therefore, I₃ becomesI_i. **Step 8**: Verify that $\bigcap I_i = I_0 \neq \{0\} \subseteq B$ $I_0 \cap I_1 \cap I_2 \cap I_3 = \{0, n_1\} \cap \{0, n_1, n_2\} \cap \{0, n_1, n_2\}$ n_3 \cap {0, n_1, n_2, n_3 }

$$= \{0, n_1\} \neq \{0\} \subseteq \mathbf{B}$$

Step 9: If step (8) is true, then we write B is a Smarandache-Boolean-near-ring.
ALGORITHM : 3.2.1
BROWERIAN ALGEBRA

Step 1: Consider a Boolean-ring A

Step 2: Verify that A is a Boolean-ring with respect to same induced operations For, Check the following conditions, '+' is defined as follows, 1.For all $n_1, n_2 \in A$, then $n_1 + n_2 \in A$ 2.For all $n_1, n_2, n_3 \in A$, then $n_1 + (n_2 + n_3) = (n_1 + n_2)$ + n_3 3.For all $n \in A$, there exist $e \in A \implies$ n + e = e+ n = n4.For all $n \in A$, there exist $n' \in A \implies$ n + n' = n' + n = e

Let $A^* = A / \{0\}$

5.For all $n_1 \in A^* \Longrightarrow n_1 \bullet n_1 = n_1 \in A^*$, 6.For all $n_1, n_2, n_3 \in A^*$, then $n_1 \bullet (n_2 \bullet n_3) = (n_1 \bullet n_2) \bullet n_3$ 7.For all $n \in A^*$, there exist $e \in A \Longrightarrow n \bullet e' = e' \bullet n = n$ 8.For all $n \in A^*$, there exist $n' \in A \Longrightarrow n \bullet n' = n' \bullet n = e'$ 9.For all $n \in A^*$, then $n \bullet n = n$ 10.For all $n, m \in A^*$, then $n \bullet m = m \bullet n$ 11.For all $n_1, n_2, n_3 \in A^*$, then $n_1 + (n_2 \bullet n_3) = (n_1 + n_2) \bullet (n_1 + n_3)$ 12.For all $n_1 \in A \Longrightarrow n_1 + n_1 = 0$

The above conditions are satisfied , then write $(B, +, \bullet)$ is a Boolean-ring.

Step 3: Let I_i , $i = 0, 1, 2, 3, \dots$ be the supersets of $I_{0.}$ Step 4: Let $B = \bigcup I_i$

Step 6 : Verify that $\bigcap I_i = I_0 \neq \{0\}$

Step 7: If step (6) is true, then we write B is a Smarandache-Boolean-near-ring.

EXAMPLE : BROWVERIAN-ALGEBRA 3.2.2

- **Step 1 :** Consider a non-empty set $A = \{0, n_1\}$
- **Step 2 :** Verify that $A = \{0, n_1\}$ is a Boolean-ring with respect to same induced operations,

For, Check the following conditions, '+' is defined as follows, 0+0=0, $0+n_1=n_1$, $n_1+0=n_1$, $n_1+n_1=0$ (i)Closure law : For all 0, $n_1 \in A$, $0+0=0 \in A, 0+n_1=n_1 \in A, n_1+0=n_1 \in A, n_1+n_1=0 \in A$

(ii)Associative law : For all $0, n_1 \in A$, $0+(0+0) = (0+0) + 0 /n_1 + (0+0) = (n_1+0) + 0$ 0+0= 0+0 / n_1+0 $= n_1+0$ / n₁ 0 = 0 $= n_1$ $0 + (0+n_1) = (0+0) + n_1/n_1 + (0+n_1) = (n_1+0) + n_1$ $= 0 + n_1$ / $n_1 + n_1$ $0+n_1$ $= n_1 + n_1$ / 0 $= n_1$ = 0 n_1 $0 + (n_1 + 0) = (0 + n_1) + 0/n_1 + (n_1 + 0) = (n_1 + n_1) + 0$ $= n_1 + 0$ / $n_1 + n_1$ = 0 + 0 $0+n_1$ 0 = 0 $/ n_1$ $= n_1$ $0+(n_1+n_1) = (0+n_1)+n_1/n_1 + (n_1+n_1) = (n_1+n_1)+n_1$ $0 + 0 = n_1 + n_1 / n_1 + 0$ $= 0 + n_1$ 0 = 0/ n₁ $= n_1$ (iii)'0' is the additive identity element : For all $0, n_1 \in A$ $0+n_1=n_1+0=n_1$ $/n_1 + 0 = 0 + n_1 = n_1$

(iv)The inverses of 0, n_1 are respectively 0, n_1 in A under addition.

 $(v) Commutative law : For all 0, n_1 \in A \\ 0 + 0 = 0 + 0 / 0 + n_1 = n_1 + 0 \\ 0 = 0 / n_1 = n_1 \\ n_1 + 0 = 0 + n_1 / n_1 + n_1 = n_1 + n_1 \\ n_1 = n_1 / 0 = 0 \\ Therefore, the commutative law satisfied under addition.$

(vi)Characterstic 2 for addition is defined as, For all 0, $n_1 \in A$, 0 + 0 = 0 $/n_1 + n_1 = 0$

Now ' \cap ' is defined as follows :

If $n_i \le n_j$ then $n_i \cap n_j = n_i$ and $n_i \cap n_i = n_i$, $0 \cap 0 = 0, 0 \cap n_1 = 0, n_1 \cap 0 = 0, n_1 \cap n_1 = n_1$,

(vii)Closure law : For all 0, $n_1 \in A$, $0 \cap 0 = 0$, $n_1 \cap n_1 = n_1$,

(viii)Associative law: For all 0, $n_1 \in A$, $\begin{array}{ccc}
0 \cap (0 \cap 0) = & (0 \cap 0) \cap 0 & / \\
0 \cap 0 & = & 0 \cap 0 \\
0 & = & 0 \\
n_1 \cap (n_1 \cap n_1) = (n_1 \cap n_1) \cap n_1 \\
n_1 \cap n_1 & = & n_1 \cap n_1 \\
n_1 & = & n_1 \\
\end{array}$

Similar way, we proceeds another associate laws.

(ix)Commutative law: For all 0, $n_1 \in A$, $0 \cap 0 = 0 \cap 0 / n_1 \cap n_1 = n_1 \cap n_1 / 0 \cap n_1 = n_1 \cap 0 / 0 = 0 / n_1 = n_1 / 0 = 0 / n_1 \cap 0 = 0 = 0$

(x)Idempotent law : For all 0, $n_1 \in A$ $0 \cap 0 = 0$ and $n_1 \cap n_1 = n_1$ (xi)For all 0, $n_1 \in A$ $0 \cap (0 \cup 0) = (0 \cap 0) \cup (0 \cap 0)$ $n_1 \cap (n_1 \cup n_1) = (n_1 \cap n_1) \cup (n_1 \cap n_1)$ Similar way, the right distributive law holds (xii) Define, the complement: For all 0, $n_1 \in A$, $0' \cap n_1 = 0$ Therefore, $(A, +, \cap, \cup)$ is a Boolean-ring.

Step 3: Let $A = A_0 = I_0$ Let $I_0 = A = \{0, n_1\}$

Step 4: Consider the supersets I_i , i = 0, 1, 2, 3 of I_0 . $I_0 = \{0, n_1\}$ $I_1 = \{0, n_1, n_2\}$ $I_2 = \{0, n_1, n_3\}$

 $I_3 = \{0, n_1, n_2, n_3\}$

Step 5: Let $B = \bigcup_{i=0}^{n} I_i$

Step 6: Choose set I_j 's from I_i 's subject to $x \le a$ implies $a = x \cup (a - x)$, for all $a, x \in I_j$

Step 7: $(B,+,-, \cup)$ is defined as follows: + and \cup is defined as follows, '+' is defined by $0+0 = 0, 0+n_1 = n_1, 0+n_2 = n_2, 0+n_3 = n_3,$ $n_1+0 = n_1, n_1+n_1 = 0, n_1+n_2 = n_3, n_1+n_3 = n_2,$ $n_2+0 = n_2, n_2+n_1 = n_3, n_2+n_2 = 0, n_2+n_3 = n_1,$ $n_3+0 = n_3, n_3+n_1 = n_2, n_3+n_2 = n_1, n_3+n_3 = 0.$

 n_i , $0 \cap 0 = 0, 0 \cap n_1 = 0, 0 \cap n_2 = 0, 0 \cap n_3 = 0,$

 $\begin{array}{c} n_{1} \frown 0 = 0, \, n_{1} \frown n_{1} = n_{1}, n_{1} \frown n_{2} = n_{1}, n_{1} \frown n_{3} = n_{1}, \\ n_{2} \frown 0 = 0, \, n_{2} \frown n_{1} = n_{2}, n_{2} \frown n_{2} = n_{2}, n_{2} \frown n_{3} = n_{2}, \\ n_{3} \frown 0 = 0, \, n_{3} \frown n_{1} = n_{3}, \, n_{3} \frown n_{2} = n_{3}, n_{3} \frown n_{3} = n_{3}, \end{array}$

 $\begin{array}{c} \cdot \bigcup, \text{ is defined by} \\ 0 \bigcup 0 = 0, \ 0 \bigcup n_1 = n_1, \ 0 \bigcup n_2 = n_2, \ 0 \bigcup n_3 = n_3, \\ n_1 \bigcup 0 = n_1, n_1 \bigcup n_1 = n_1, \ n_1 \bigcup n_2 = n_2, n_1 \bigcup n_3 = n_3, \\ n_2 \bigcup 0 = n_2, n_2 \bigcup n_1 = n_1, \ n_2 \bigcup n_2 = n_2, \ n_2 \bigcup n_3 = n_3, \\ n_3 \bigcup 0 = n_3, \ n_3 \bigcup n_1 = n_3, \ n_3 \bigcup n_2 = n_3, n_3 \bigcup n_3 = n_3, \end{array}$

n-m is defined by n-m = n if $n \le m$ For all $0 \in B$, $n_1 \in I_0$ then / For all $n_1 \in B$, $0 \in I_0$ then $0 \cup (n_1 - 0) = 0 \cup (n_1 + n_1 \cap 0)$ $= 0 \cup (n_1 + 0)$ $= 0 \cup n_1 = n_1 \in I_0$ $n_1 \cup (0 - n_1) = n_1 \cup (0 + 0 \cap n_1)$ $= n_1 \cup (0 + 0)$ $= n_1 \cup 0$ $= n_1 \in I_0$ For all $n_2 \in B$, $0 \in I_0$ then, / $0 \cup (n_2 - 0) = 0 \cup (n_2 + n_2 \cap 0)$ $= 0 \cup (n_2 + 0)$ $= n_1 \in I_0$ $= n_1 \in I_0$

For all $n_3 \in B$, $0 \in I_0$ then, $n_3 \cup (0 - n_3) = n_3 \cup (0 + 0 \cap n_3)$ /

 $n_i \cap n_i =$

www.ijsret.org

n

 $= n_3 \cup (0+0)$ $= n_3 \cup 0 = n_3$, $\cap 0' = 0 \cap n_3$ $= 0 \in I_0$

For all $n_2 \in B$, $n_1 \in I_0$ then, / $n_2 \cup (n_1 - n_2) = n_2 \cup (n_1 + n_1 \cap n_2)$ $= n_2 \cup (n_1 + n_1)$ $= n_2 \cup 0$ $= n_2 \in I_1$

For all $n_3 \in B$, $n_1 \in I_0$ then, $n_3 \cup (n_1 - n_3) = n_3 \cup (n_1 + n_1 \cap n_3)$ $= n_3 \cup (n_1 + n_1)$ $= n_3 \cup 0 = n_3' \cap 0' = 0 \cap n_3$ $= 0 \in I_1$

For all $n_1 \in B$, $n_1 \in I_0$ then / $\mathbf{n}_1 \cup (\mathbf{n}_1 - \mathbf{n}_1) = \mathbf{n}_1 \cup (\mathbf{n}_1 + \mathbf{n}_1 \cap \mathbf{n}_1)$ $= n_1 \cup (n_1 + n_1)$ $= n_1 \cup 0$ $= n_1 \in I_0$

For all $0 \in B$, $0 \in I_0$ then, $0 \cup (0-0) = 0 \cup (0+0 \cap 0)$ $= 0 \cup (0 + 0)$ $= 0 \cup 0$ $= 0 \in I_0$

Hence, I₀ satisfies all the requirements.

Therefore, we choose I_0 as I_i . Hence for $I_1 = \{0, n_1, n_2\}$ and B $= \{0, n_1, n_2, n_3\}$ $n \cup (m-n) = m$, for all $n, m \in B$, and $0 \in I_1$. Therefore, I1 also choose as Ii.

Similarly, for $I_2 = \{0, n_1, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$ $n \cup (m-n) = m$, for all $n, m \in B$, and $0 \in I_2$. Therefore, I₂ also choose as I_i.

Similarly, for $I_3 = \{0, n_2, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$

 $n \cup (m-n) = m$, for all $n, m \in B$, and $0 \in I_3$. Therefore, I₃ becomes I_i.

Step 8: Verify that $\bigcap I_i = I_0 \neq \{0\} \subseteq B$

 $I_0 \cap I_1 \cap I_2 \cap I_3 = \{0, n_1\} \cap \{0, n_1, n_2\} \cap \{0, n_1, n_2\}$ n_3 \cap {0, n_1, n_2, n_3 }

$$= \{0, n_1\} \neq \{0\} \subset \mathbf{B}$$

Step 9: If step (8) is true, then we write B is a Smarandache-Boolean-near-ring.

ALGORITHM: 3.3.1 **COMPATIBILITY:**

Step 1: Consider a Boolean-ring A

Step 2: Verify that A is a Boolean-ring with respect to same induced operations For, Check the following conditions, '+' is defined as follows, 1.For all $n_1, n_2 \in A$, then $n_1 + n_2 \in A$

2.For all $n_1, n_2, n_3 \in A$, then $n_1 + (n_2 + n_3) =$ $(n_1 + n_2) + n_3$ 3. For all $n \in A$, there exist $e \in A \implies n + e$ = e + n =4. For all $n \in A$, there exist $n' \in A \implies n + n' =$ n' + n = eLet $A^* = A / \{0\}$ 5.For all $n_1 \in A^* \Longrightarrow n_1 \bullet n_1 = n_1 \in A^*$, 6.For all $n_1, n_2, n_3 \in A^*$, then $n_1 \bullet (n_2 \bullet n_3) = (n_1 \bullet n_2)$ • n₃ 7.For all $n \in A^*$, there exist $e \in A \implies n \bullet e' = e' \bullet n$ = n8. For all $n \in A^*$, there exist $n' \in A \implies n \bullet n' = n' \bullet n$ = *e*' 9. For all $n \in A^*$, then $n \bullet n = n$

10. For all n, $m \in A^*$, then $n \bullet m = m \bullet n$ 11.For all $n_1, n_2, n_3 \in A^*$, then $n_1 + (n_2 \bullet n_3) = (n_1 + n_2)$ • $(n_1 + n_3)$ 12.For all $n_1 \in A \Longrightarrow n_1 + n_1 = 0$

The above conditions are satisfied, then write (B, +, ●) is a Boolean-ring.

Step 3 : Let I_i , $i = 0, 1, 2, 3, \dots$ be the supersets of I_0 .

Step 4: Let $B = \bigcup I_i$

Step 5 : Choose the sets I_i from I_i's subject to for all $a, b \in I_i$ such that $ab^2 = a^2b \in I_i$

Step 6 : Verify that \bigcap Ij = I₀ \neq {0}

Step 7: If step (6) is true, then we write B is a Smarandache-Boolean-near-ring.

EXAMPLE : COMPATIBILITY 3.3.2

Step 1: Consider a non-empty set $A = \{0, n_1\}$

Step 2: Verify that $A = \{0, n_1\}$ is a Boolean-ring with respect to same induced operations For, Check the following conditions, '+' is defined as follows, 0+0=0, $0+n_1=n_1$, $n_1+0=n_1$, $n_{1+}n_1=0$ (i)Closure law : For all 0, $n_1 \in A$, $0+0 = 0 \in A, 0+n_1 = n_1 \in A, n_1+0=n_1 \in A, n_1+n_1=0 \in A$ (i)Associative law : For all 0, $n_1 \in A$, $0+(0+0) = (0+0) + 0/n_1 + (0+0) = (n_1+0) + 0$ 0 + 0 $= 0+0 / n_1+0$ $= n_1 + 0$ = 0 0 / n₁ $= n_1$ $0 + (0+n_1) = (0+0) + n_1/n_1 + (0+n_1) = (n_1+0) + n_1$ $= 0 + n_1 / n_1 + n_1$ $0+n_1$ $= n_1 + n_1$ $= n_1 / 0$ = 0 n_1 $0 + (n_1 + 0) = (0 + n_1) + 0/n_1 + (n_1 + 0) = (n_1 + n_1) + 0$ $0+n_1$ $= n_1 + 0 / n_1 + n_1$ = 0 + 0 $= n_1$ 0 = 0 n_1 $0+(n_1+n_1) = (0+n_1)+n_1/n_1 + (n_1+n_1) = (n_1+n_1)+n_1$ 0 + 0 $= n_1 + n_1 / n_1 + 0$ $= 0 + n_1$

0 = 0 $/ n_1$ $= n_1$

(iii) '0' is the additive identity element : For all 0, $n_1 \in A$ $0+n_1 = n_1+0 = n_1$ $/n_1+0 = 0+n_1 = n_1$

(iv)The inverses of 0, n_1 are respectively 0, n_1 in A under addition.

(v)Commutative law : For all 0, $n_1 \in A$ 0 + 0 = 0 + 0/ $0+n_1 = n_1+0$ 0 = 0 / $n_1 = n_1$

 $n_1 + 0 = 0 + n_1 / 1$ $n_1 + n_1 = n_1 + n_1$ $n_1 = n_1 /$ 0 = 0Therefore, the commutativity satisfied under addition.

(vi)Characterstic 2 for addition is defined as,

For all 0, $n_1 \in A$, 0 + 0 = 0/ $n_1 + n_1 = 0$ Let $A^* = A / \{0\} = \{0, n_1\} = n_1$, Now ' \bullet ' is defined as follows, $0 \bullet 0 = 0, \ 0 \bullet n_1 = 0, \ n_1 \bullet 0 = 0, \ n_1 \bullet n_1 = n_1$

In general, we define $n \bullet m = n$, for all $n, m \in A$ (vii)For all $n_1 \in A^*$, $n_1 \bullet n_1 = n_1 \in A^*$, (viii)For all $n_1 \in A^*$, $\mathbf{n}_1 \bullet (\mathbf{n}_1 \bullet \mathbf{n}_1) = (\mathbf{n}_1 \bullet \mathbf{n}_1) \bullet \mathbf{n}_1$ $n_1 \bullet n_1$ $= n_1 \bullet n_1$ $= n_1$ n_1

(ix)'n₁'is the identity element of A^{*} under multiplication

(x)For all 0, $n_1 \in A^*$, $0 \bullet 0 = 0 /$ $n_1 \bullet n_1 = n_1$ Hence, the idempotent law is satisfied under multiplication.

```
(xi)Product is distributive over addition as follows:
For all
               0, n_1 \in A,
0 \bullet (0+0) = 0 \bullet 0 + 0 \bullet 0 /
                = 0 + 0
0•0
                = 0
0
n_1 \bullet (n_1 + n_1) = (n_1 \bullet n_1) + (n_1 \bullet n_1)
n_1 \bullet 0
                   = n_1 + n_1
0
                   = 0
n_1 \bullet (0+0) = n_1 \bullet 0 + n_1 \bullet 0
                 = 0 + 0
n_1 \bullet 0
0
                 = 0
\mathbf{n}_1 \bullet (\mathbf{0} + \mathbf{n}_1) = \mathbf{n}_1 \bullet \mathbf{0} + \mathbf{n}_1 \bullet \mathbf{n}_1
                     = 0 + n_1
n_1 \bullet n_1
                     = n_1
n_1
n_1 \bullet (n_1 + 0) = n_1 \bullet n_1 + n_1 \bullet 0 / 0 \bullet (n_1 + n_1) = 0 \bullet n_1 + 0 \bullet n_1
                  = n_1 + 0 /
                                             0 \bullet 0
                                                                  = 0 + 0
n_1 \bullet n_1
                                             0
                                                                  = 0
                  = n_1
0 \bullet (n_1 + 0) = 0 \bullet n_1 + 0 \bullet 0  /0 \bullet (0 + n_1) = 0 \bullet 0 + 0 \bullet n_1
                = 0 + 0 /
                                                                 = 0 + 0
                                             0 \bullet n_1
0 \bullet n_1
               = 0 /
                                             0
                                                                  = 0
0
               Similar way, the right distributive law holds.
(xii)
               Commutative law : For all 0, n_1 \in A
                                                           n_1 \bullet 0
```

$$\begin{array}{ll} \mathbf{n}_1 \bullet \mathbf{0} &= \mathbf{0} \bullet \mathbf{n}_1 \\ \mathbf{0} &= \mathbf{0} \end{array} \begin{array}{l} /\mathbf{n}_1 \bullet \mathbf{n}_1 = \mathbf{n}_1 \bullet \mathbf{n}_1 \\ /\mathbf{n}_1 = \mathbf{n}_1 \end{array}$$

Hence, all the requirements of Boolean-rings are satisfied. Therefore, $(A,+, \bullet)$ is a Boolean-ring.

Step 3 : Let $A = A_0 = I_0$ Let $I_0 = A = \{0, n_1\}$

Step 4 : Consider the supersets
$$I_i$$
, $i = 0, 1, 2, 3$ of I_0 .
 $I_0 = \{0, n_1\}$

 $I_1 = \{0, n_1, n_2\}$ $I_2 = \{0, n_1, n_3\}$

 $\overline{I_3} = \{0, n_1, n_2, n_3\}$

Step 5: Let $B = \bigcup_{i=0}^{n} I_i$

Step 6 : Choose set I_i 's from I_i 's subject to for all $a, b \in I_i$ such that $ab^2 = a^2b \in Ij$

Step 7 : $(B,+, \bullet)$ is defined as follows : + and \bullet is defined as follows, '+' is defined by $0+0=0, 0+n_1=n_1, 0+n_2=n_2, 0+n_3=n_3,$ $n_1+0=n_1, n_1+n_1=0, n_1+n_2=n_3, n_1+n_3=n_2,$ $n_2+0=n_2$, $n_2+n_1=n_3$, $n_2+n_2=0$, $n_2+n_3=n_1$, $n_3+0=n_3$, $n_3+n_1=n_2$, $n_3+n_2=n_1$, $n_3+n_3=0$.

• • ' is defined by $0 \bullet 0 = 0, 0 \bullet n_1 = 0, 0 \bullet n_2 = 0, 0 \bullet n_3 = 0,$

 $n_1 \bullet 0 = n_1, n_1 \bullet n_1 = n_1, n_1 \bullet n_2 = n_1, n_1 \bullet n_3 = n_1,$ $n_2 \bullet 0 = n_2, n_2 \bullet n_1 = n_2, n_2 \bullet n_2 = n_2, n_2 \bullet n_3 = n_2,$

 $n_3 \bullet 0 = n_3, n_3 \bullet n_1 = n_3, n_3 \bullet n_2 = n_3, n_3 \bullet n_3 = n_3,$

 $nm^2 = n^2m$ is defined by For all $0 \in B$, $n_1 \in I_0$ then For all $n_1 \in B$, $0 \in I_0$ then / $0 n_1^2 = 0^2 n_1$ $n_1 0 = n_1^2 0$ $0 n_1 = 0 n_1$ $n_1 0 = n_1 0$ 0 = 00 = 0 $= 0 \in I_0$ $= 0 \in I_0$ For all $n_2, 0 \in B$, then, / For all $n_3 \in B$, $0 \in I_0$ then, $n_3^2 0 = 0^2 n_3$ $n_1 0 = n_1^2 0$ $n_1 0 = n_1 0$ $n_3 0 = n_3^2 0$ 0 = 00 = 0 $= 0 \in I_0$ $= 0 \in I_0$ For all $n_2 \in B$, $n_1 \in I_0$ then / For all $n_3 \in B$, $n_1 \in I_0$ then, $n_2 n_1^2 = n_2^2 n_1$ $n_3 n_1^2 = n_3^2 n_1$ $\mathbf{n}_2\mathbf{n}_1 = \mathbf{n}_2 \mathbf{n}_1$ $n_3 n_1 = n_3 n_1$ $n_1 n_2 = n_1 n_2$ $n_1 n_3 = n_1 n_3$ $n_1 = n_1$ $= n_1$ n_1 $= n_1 \in I_0$ $= n_1 \in I_0$ For all $n_1 \in B$, $n_1 \in I_0$ then /For all $0 \in B$, $0 \in I_0$ then, $0 0^2 = 0^2 0$ $n_1 n_1^2 = n_1^2 n_1$ 00 = 00 $n_1n_1 = n_1n_1$ 0 = 0 $n_1 = n_1$ $= 0 \in I_0$ $= n_1 \in I_0$

Hence, I₀ satisfies all the requirements.

Therefore, we choose I_0 as I_i . Hence for $I_1 = \{0, n_1, n_2\}$ and $B = \{0, n_1, n_2, n_3\}$

- $n_i n_i^2 = n_i^2 n_i$, for all n_i , $n_i \in B$, and $0 \in I_1$.
- Therefore, I_1 also choose as I_{j} .
- Similarly, for $I_2 = \{0, n_1, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$
- $n_i n_i^2 = n_i^2 n_i$, for all $n_i, n_i \in B$, and $0 \in I_2$.

Therefore, I₂ also choose as I_i.

Similarly, for $I_3 = \{0, n_2, n_3\}$ and $B = \{0, n_1, n_2, n_3\}$

$$n_i n_j^2 = n_i^2 n_j$$
, for all $n_i, n_j \in B$, and $0 \in I_3$.

Therefore, I₃ becomes I_j.

Step 8: Verify that $\bigcap I_i = I_0 \neq \{0\} \subset B$

 $\begin{array}{rcl} I_0 \bigcap I_1 \bigcap I_2 \bigcap & I_3 &=& \{0,n_1\} \bigcap \{0, & n_1,n_2 & \} \bigcap \{0, & n_1,n_2, n_3\} \end{array}$

$$= \{0, n_1\} \neq \{0\} \subset \mathbf{B}$$

Step 9: If step (8) is true, then we write B is a Smarandache-Boolean-near-ring.

REFERENCES :

[1] James R. Clay and D.A. Lawver, "Boolean-near -rings", Canad. Math. Bull., Vol.12, 3, 265-273, 1969

[2] Franz Binder and Peter Mayer, "Algorithm for finite near-rings and their N-grouos", Airtcle accepted by journal of symbolic computation, 2000.

[3] Florentin Smarandache, "Special Algebraic Structures", Gall up, NM87301, USA, 1991.

[4] Dr. N. Kannappa and Mrs. P. Tamilvani, "On some Characterization of Smarandache - Boolean - near- rings", Heber International Conference on Applications of Mathematics and Statistics, Hicams2012, Bishop Heber (Autonomous), Tiruchirappalli, Jan 7-9, 2012.

[5] Dr.N. Kannappa and Mrs. P. Tamilvani, "On some Characterization of Smarandache - Boolean-near-rings with Ideals", International Conference on Mathematics in Engineering and Business Management, ICMEB2012, StelllaMarris College(Autonomous), Chennai, 9-10 March, 2012.

[6] Dr.N. Kannappa and Mrs. P. Tamilvani, "Smarandache -Boolean-near-rings with sub direct sum structure", International Journal of Scientia Magna, PR china, ISSN-1556-6706, Vol.9, No.3., 2013.

[7] Dr.N. Kannappa and Mrs. P. Tamilvani, "Smarandache-Boolean-near-rings and Boolean-*l*-algebra", An international Journal

of ActaCienciaIndica, Meerut, Vol .XLM 2014, No.1, ISSN 0970-0455, 2014.

405

[8] Dr.N. Kannappa and Mrs. P. Tamilvani, "Smarandache-Booleannear-rings and Polynomial Identities", International Conference on Mathematical Methods and Computation, ICOMAC 2014, ISSN 0973-0303, JMC, Thirchirappalli, 342-345, 2014.

[9] Dr. N.Kannappaand Mrs. P. Tamilvani, "Smarandache-Booleannear-rings and Algorithms", International Journal of Fuzzy Mathematical Archive, Vol.9, No.1, ISSN : 2320-3242 (P), 111 -118, Oct 2015.

[10] Dr. T. Ramaraj and N. Kannappa, "On finite Smarandachenear-rings", Scienctia Magna, Department of Mathematics, North West University, Xi'an, Shaanxi, PR, China, Vol. 1, No.2, ISSN 1556 – 6706, Page 49–56, 2005.

[11] Dr. T. Ramaraj and N. Kannappa, "On Six equivalent conditions of Smarandache-near-rings", Pure and Applied Mathamathika Science, ISSN 0379 – 3168, Saharanpur, India, 2006.

[12] Dr. T. Ramaraj and N. Kannappa, "On some characterization of Smarandache-near-rings by quasi – ideals - Revised", ActaCienciaIndica, 216/M06, Meerut, India, 2006.

[13] Dr. T. Ramaraj and N. Kannappa, "Algorithms for Smarandache-near-rings", UGC Sponsored State Level Seminar on Stochastic Processes and its Applications, A.V.V.M. Sri Pushpam College(Autonomous), Poondi, India, March 16th and 17th, 2006.

[14] Dr. T. Ramaraj and N. Kannappa, "On some characterization of Smarandache-near-rings by quasi-ideals", Jamal Academic Research Journal, An interdisplinary, Vol. 2, No. 2, Pages 44 – 47, Trichirappalli, India, 2005.

[15] Raul Padilla, "Smarandache Algebraic Structures", Bull. Pure and Appl. Sci 17E, 119-121, 1998.

[16] Jav– ShyongShiue and Wen–Min Chao, "On the Booleanrings", National Science Council, Taiwan, RP China, 93-96, 1975.

[17]Houssein El Turkey, "Boolean rings", the University of Oklahoma, Dept. of Mathematics, 2009.

[18] G. Berman and R.J. Silverman, "Near-rings", Amer. Math., Monthly 66, 23-24, 1959.

[19] Raul Padilla, "Smarandache Algebraic Structures", Presented to the Universidade do Minho, Baraga, Portugal, 18-23, June 1999.

[20] V.V. Rama Rao, "On a common Abstraction of Boolean-rings and Lattice ordered groups II", Monat. Fur. Math., 1969.

[21] www.gallup.unm.edu/ Smarandache/algebra.htm.

[22] Gunter Pilz, "Near - rings", North Holland, Amesterdam, 198